Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhen-Guang Zou, ${ }^{\text {a }}$ Peng Guo ${ }^{\text {b }}$ and Yin-Xiang Lu**
${ }^{\text {a }}$ Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China, and ${ }^{\text {b }}$ Department of Materials Science, Fudan University, Shanghai 200433, People's Republic of China

Correspondence e-mail: yxlu@fudan.edu.cn

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.039$
$w R$ factor $=0.113$
Data-to-parameter ratio $=15.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N-[2-(Aminosulfonyl)-5,6-dihydro-6-methyl-7,7-dioxo-4H-thieno[2,3-b]-thiopyran-4-yl]acetamide

The title compound, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{3}$, has been synthesized as a key intermediate in the synthesis of topically active carbonic anhydrase inhibitor MK-0507. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are responsible for the formation of centrosymmetric dimers and zigzag molecular chains. The intermolecular non-bonded S..O separation in the crystal structure is $3.415(2) \AA$, indicating a strong intermolecular interaction between the aminosulfonyl and S-dioxide groups.

Comment

The title compound, (I), is a key intermediate in the total synthesis of topically active carbonic anhydrase inhibitor MK0507 (Blacklock et al., 1993; Thomas et al., 1997).

(I)

The molecular structure and atom-labelling scheme are shown in Fig. 1. The shortest intermolecular S...O contact, between S 1 and O3 ${ }^{\mathrm{i}}$, is 3.415 (2) \AA [symmetry code: (i) $-x+\frac{3}{2}$, $\left.y+\frac{1}{2}, z\right]$, indicating a strong intermolecular interaction between these two atoms. In addition, there are also weak S \cdots C interactions [non-bonded separation $=3.858(3) \AA$], as well as S . . S short contacts [3.949> (4) Å] (Lan et al., 2005).

Further examination of the crystal structure of (I) reveals possible $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1). Intermolecular $\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O}^{\mathrm{i}}$ hydrogen bonds [symmetry code: $\left.(i)-x+\frac{3}{2}, y+\frac{1}{2}, z\right]$ form zigzag molecular chains propagating in the b-axis direction, while $\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2^{11}$ hydrogen bonds [symmetry code: (ii) $-x+2,-y+2,-z+1$] form centrosymmetric dimers, as shown in Fig. 2.

Experimental

The title compound was synthesized from methyl 3 -(p-toluenesulfonyloxy)butyrate according to a literature method (Blacklock et al., 1993; Ponticello et al., 1987, 1988). Single crystals of (I) were grown by slow evaporation, in air, of a THF solution. Selected analytical data: pale-yellow solid, yield 89%; m.p. $524-525 \mathrm{~K} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 500 \mathrm{MHz}\right): \delta 8.62(d, 1 \mathrm{H}), 8.05(s, 2 \mathrm{H}), 7.42(s, 1 \mathrm{H})$, $5.19(m, 1 \mathrm{H}), 3.89(m, 1 \mathrm{H}), 2.45(m, 1 \mathrm{H}), 2.29(m, 1 \mathrm{H}), 1.86(s, 3 \mathrm{H})$,

Received 27 September 2005
Accepted 8 November 2005
Online 16 November 2005
$1.33(d, 3 H)$; IR (KBr) v: 3337, 3240, 3080, 2939, 1654, 1523, 1449, 1334, 1303, 1170, 1138, 1035, 926, 873, $694 \mathrm{~cm}^{-1}$;

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{3}$
$M_{r}=338.41$
Orthorhombic, Pbca
$a=9.842(3) \AA$
$b=15.290(5) \AA$
$c=19.434(6) \AA$
$V=2924.5(15) \AA^{3}$
$Z=8$
$D_{x}=1.537 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 1543
reflections
$\theta=2.7-21.2^{\circ}$
$\mu=0.53 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Prism, yellow
$0.20 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.902, T_{\text {max }}=0.949$
13578 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.114$
$S=0.96$
2865 reflections
189 parameters

$$
\begin{aligned}
& \text { H-atom parameters constrained } \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0614 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.35 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O}^{\mathrm{i}}$	$0.81(4)$	$2.14(4)$	$2.876(4)$	$150(3)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{ii}}$	$0.85(3)$	$2.14(3)$	$2.962(4)$	$161(3)$
$\mathrm{N} 1-\mathrm{H} 1 D \cdots \mathrm{O}^{\mathrm{iii}}$	0.86	2.07	$2.861(3)$	152
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O}^{\mathrm{iii}}$	0.98	2.52	$3.346(3)$	142
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\mathrm{iv}}$	0.97	2.66	$3.623(4)$	174
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O}^{\mathrm{v}}$	0.98	2.53	$3.276(3)$	132

Symmetry codes: (i) $-x+\frac{3}{2}, y+\frac{1}{2}, z$; (ii) $-x+2,-y+2,-z+1$; (iii) $x+\frac{1}{2}, y,-z+\frac{3}{2}$; (iv) $x-\frac{1}{2}, y,-z+\frac{3}{2} ;$ (v) $-x+1,-y+2,-z+1$.

H atoms were included using a riding model and were constrained to have $\mathrm{C}-\mathrm{H}=0.95 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the parent atom. H atoms attached to N 2 were refined freely.

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

This research was financially supported by the ShanghaiApplied Materials R\&D Foundation (No. 0422) and Youth Fund of Fudan University.

References

Blacklock, T. J., Sohar, P., Butcher, J. W., Lamanec, T. \& Grabowski, E. J. J. (1993). J. Org. Chem. 58, 1672-9.

Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 1
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
The crystal structure of (I), viewed in two directions. Dashed lines indicate $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

[^0]
organic papers

Ponticello, G. S., Freedman, M. B., Habecker, C. N., Holloway, M. K., Amato, J. S., Conn, R. S. \& Baldwin, J. J. (1988). J. Org. Chem. 53, 9-13.

Ponticello, G. S., Freedman, M. B., Habecker, C. N., Lyle, P. A., Schwam, H., Varga, S. L., Christy, M. E., Randall, W. C. \& Baldwin, J. J. (1987). J. Med. Chem. 30, 591-597.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Thomas, S. M., Berwick, L., Dovletoglou, A., Machado, C, Novack, T. J. \& Ellison, D. K. (1997). At-Process, 2, 432-439.

[^0]: Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
 Lan, B.-J., Guo, P., Zou, Z.-G. \& Lu, Y.-X. (2005). Acta Cryst. E61, o3022o3024.

